Images of Tooth Decay Healing due to an Improved Diet

Diposting oleh good reading on Rabu, 15 April 2009

This one's for the skeptics out there. As I mentioned in my previous post, Drs. Edward and May Mellanby and Dr. Weston Price reported that under the right circumstances, tooth decay can be reversed by proper nutrition. Here are images taken from the book Nutrition and Disease, by Dr. Mellanby, showing the re-calcification of decayed human teeth due to the growth of tertiary dentin (formerly known as secondary dentin). These are sections (slices) of teeth that have been treated with a chemical that darkens decayed areas. They represent four different teeth at different stages of decay reversal. Click on the image for a larger view:


Here's the text that accompanies the figure:
The hardening of carious areas that takes place in the teeth of children fed on diets of high calcifying value indicates the arrest of the active process and may result in “healing” of the infected area. As might be surmised, this phenomenon is accompanied by a laying down of a thick barrier of well-formed secondary denture. Illustrations of this healing process can be seen in Figs. 21 (b), (c) and (d). Summing up these results it will be clear that the clinical deductions made on the basis of the animal experiments have been justified, and that it is now known how to diminish the spread of caries and even to stop the active carious process in many affected teeth.
The following reference contains a summary of Dr. May Mellanby's experiments on healing tooth decay in children using diet: Mellanby, M. et al. British Medical Journal. Issue 1, page 507. 1932. The diet they used was typically a combination of some source of vitamin D (cod liver oil or irradiated ergosterol), plus liberal full-fat dairy, meats, eggs, vegetables, potatoes and grains low in phytic acid such as white bread. The most effective version of his diet, however, did not include grains.

In the book Nutrition and Physical Degeneration, Dr. Price provides X-rays showing the re-calcification of a mouth full of cavities using a similar diet.

More aboutImages of Tooth Decay Healing due to an Improved Diet

Easy Mango Pudding

Diposting oleh good reading on Minggu, 12 April 2009

I have been buying lots of Thailand Honey Mangoes lately. It is probably the season now for these fruits. Although they are not as fragrant compared to the other varieties of mangoes, they are very sweet and juicy when ripened, and they are also relatively cheaper and affordable.


Whenever there is an abundance of mangoes in my house, I will definitely use them to make some mango puddings.


I always follow this simple recipe which is no difference from making some easy jelly. I just need to mix a pack of jelly crystals with a cup of boiling water and a can of Carnation milk, then add in the fresh mangoes, and pour into jelly cups. I usually get this "Tortally" brand of jelly crystal which is easily available from most local supermarkets and even the nearby convenient shops. However, it doesn't come with a mango flavor, so I have made do with the pineapple flavour instead. Nevertheless, it doesn't affect the taste of the mango pudding at all. This is one of our family's favourite dessert of all time.


Easy Mango Pudding

Ingredients:

1 packet (90g) of jelly crystals (pineapple flavour)
1 cup (250ml) of boiling water
1 can of Carnation Evaporated Milk (I used low fat version)
1 mango, cut into small cubes




Method:
  1. Pour a cup of hot boiling water into a bowl, stir in the jelly crystals making sure the crystals dissolved completely. (If the crystals doesn't dissolve completely, heat the mixture in a saucepan, stir till the crystals dissolve completely.) Set aside and let it cool off a little.
  2. Add in the can of evaporate milk. Stir in the mango cubes. Mix well. Spoon into jelly cups. Chill in fridge to set.

    Tip: There is no mango flavoured jelly crystals, so the closest is the pineapple flavour. After filling the jelly cups, use a teaspoon to remove air bubbles which will form on the surface, otherwise there will be unsightly bubbles on the surface of the pudding when set.

More aboutEasy Mango Pudding

Modern Diet-Health Epidemiology: a Self-Fulfilling Prophecy? Part II

Diposting oleh good reading on Kamis, 09 April 2009

Certain ideas about diet and health, for better or for worse, have worked their way deeply into the American psyche in the last few decades. We're advised by health authorities, the news media, food advertisements, our doctors and our friends to eat less saturated fat, red meat and sugar, and more fruit, vegetables and whole grains. This has been the mainstream message for roughly four decades. To some degree, people are listening. We've replaced animal fats with unsaturated vegetable oils, red meat with poultry, whole milk with low-fat milk, and we're eating more fruit and vegetables than in recent history. Here are two graphs of U.S. Department of Agriculture data to illustrate the point:Whole grains are a very instructive case. Dr. Dennis Burkitt was one of the originators of the idea that fiber is good for health. He spent a number of years in eastern Africa, where he observed that natives on their traditional high-grain-fiber diets were free of many modern degenerative conditions, particularly those involving the digestive system. He found that as these cultures began to rely on Western foods such as white flour and sugar, their health declined dramatically. This is similar to the observation Dr. Weston Price made, however the two men interpreted their findings differently. Price attributed the effect to a loss of micronutrients, while Burkitt attributed it to the loss of fiber.

There are a number of observational studies that
have examined the relationship between whole grain intake and health. The massive Iowa Women's Health Study, for example, showed that women with a high intake of grain fiber had a 17% lower risk of death from all causes combined. In the same group, women in the top quintile (top 20%) of whole grain consumption had a 30% lower risk of heart attack than women in the lowest quintile. These two papers were published in 2000 and 1998. Here's where it starts to get interesting. From the second paper:
Higher whole-grain intake was associated with having more education, a lower body mass index and waist-to-hip ratio [and] being a non-smoker, doing more regular physical activity, and using vitamin supplements and hormone replacement therapy.
Do whole grains prevent smoking too? An alternative explanation is that the women who were eating whole grains were all-around more conscientious and concerned about their health than those eating refined grains. And why not? They "knew" from mainstream diet advice that whole grains are healthier than refined grains. When is the last time you saw someone smoking a cigarette while eating whole grain muesli with skim milk and half a grapefruit for breakfast? Is it easier to imagine someone smoking while eating a donut and sweetened coffee? Women who eat whole grains, on average, are those that care about their health and adopt patterns that they perceive as healthy throughout their lives. This includes behaviors large and small, both measurable and unmeasurable. The investigators factored smoking into their model, but you can't factor in things you didn't measure or don't understand.

Maybe it will come as no surprise, then, that the Diet and Reinfarction
 showed a trend toward increased mortality in the group that doubled its grain fiber intake. Here's the graph of survival in the two groups.  It's important to mention that the fiber group probably increased its grain fiber haphazardly, using bran and unfermented grains, rather than the traditional processing techniques of healthy grain-based cultures Burkitt described.

Here's the theory. When the public decides that a particular behavior is healthy, at that point it bec
omes difficult to accurately measure its impact on health using observational studies. This is due to the fact that healthy, conscientious people tend to gravitate toward the recommendation. If a theory manages to become implanted early on, it will become a self-fulfilling prophecy as healthy, conscientious people adopt the behavior and are detected by subsequent observational studies. People who don't care about their health or aren't motivated enough to make a change will keep living how they used to, and that will also be detected.

You can adjust for some of these factors if you measure them. Researchers commonly adjust for age, gender, smoking, exercise and sometimes other factors when they're trying to nail down the effect of a particular factor on health. But you can't measure all the little things that accompany a health-conscious lifestyle. Do the participants take the stairs or the elevator? Do they take supplements, and if so, which ones? How much sunlight do they get? Do they have positive relationships with their friends and family? How often do they shave (kidding)? What is the quality of the foods they buy? How often do they visit the doctor, and how often do they follow her advice? There are too many potential confounding factors to measure and correct for, and collectively they have the potential to be significant. In my opinion, this means that observational data gathered from populations that already have opinions about the factor you're trying to study may tend to reinforce prevailing notions regardless of their accuracy.

This brings us to the recent study on meat intak
e and mortality. It was a massive observational study that followed the diet and health of 617,119 elderly Americans for 10 years. Researchers found that the highest quintile of red meat intake was at an elevated risk of cancer and cardiovascular disease, and had an overall risk of dying about 1/3 greater than those in the lowest quintile. That's a pretty somber finding for those of us who love a juicy steak. But let's look at a few of the things that came along with red meat intake. I'm going to post a few graphs of factors that associated with red meat. They're organized by ascending quintiles of red meat intake; in other words, the people eating the least (left) through the most (right) red meat.As compared to men eating the least red meat, men eating the most were three times more likely to smoke, half as likely to exercise regularly, and 22% less likely to take vitamin supplements! These are clearly people who are less concerned about their health in general. The investigators adjusted their model for a number of potential confounding factors: education, marital status, family history of cancer, race, body mass index, smoking history, exercise, alcohol intake, vitamin supplementation, fruit and vegetable intake, and hormone replacement therapy. This adjustment weakened but did not eliminate the association between red meat intake and mortality.

But again, you can't adjust for variables you don't measure. How about vitamin D status? Sugar intake? Quality and frequency of doctor's visits? Mental health? Dental health? Quality of food? There's no way to measure all the little things a health-conscious person will do to take care of himself. These unmeasured (and sometimes unmeasurable) factors can add up to have a major impact on health. So in the end, what are these studies really measuring? The association between diet and health, or the association between a health-conscious lifestyle and health? There's no way to know without a controlled trial.

Here are a few other critiques of the study that are worth reading. Chris Masterjohn points out that the investigators' method of measuring meat intake was stunningly inaccurate, and they may have been measuring wishful thinking more than meat itself. Dr. Michael Eades points out that two other studies appeared at the same time, without fanfare, that contradicted the study's findings. And Jenny Ruhl discusses the implications of the bizarre finding that red meat intake also associates with the risk of accidental death.
More aboutModern Diet-Health Epidemiology: a Self-Fulfilling Prophecy? Part II

Modern Diet-Health Epidemiology: a Self-Fulfilling Prophecy? Part I

Diposting oleh good reading on Selasa, 07 April 2009

Epidemiology is the study of population statistics to learn about health. It can provide simple information such as the prevalence of hepatitis C in a particular region, or it can provide more complex information such as the association between dietary patterns and gout. It has brought us many great things, from its roots in understanding the transmission of communicable diseases, to the identification of smoking as the probable cause of lung cancer.

Observational studies are a mainstay of epidemiology. In observational studies, investigators gather data passively rather than manipulating variables. For example, if you want to know if people who wear tight shoes develop bunions, you would find a group of people who wear tight shoes and one that doesn't. You would try your best to make sure the groups are the same in every way besides shoe tightness: age, gender, weight, etc. Then you would follow them for 10 years to see how many people in each group develop bunions. You would then know whether or not wearing tight shoes is associated with bunions.

Observational data can never tell us that one thing caused another, only that the two are associated. The tight shoes may not have caused the bunions; they may simply have been associated with a third factor that was the true cause. For example, maybe people who wear tight shoes also tend to eat corn flakes, and corn flakes are the real cause of bunions. Or perhaps bunions actually cause people to wear tight shoes, rather than the reverse. Observational data can't resolve these questions definitively.

To establish causality, you have to do a controlled trial. In the case of our example, we would select 2,000 people and assign them randomly to two groups of 1,000. One group would wear tight shoes while the other would wear roomy shoes. After 10 years, we would see how many people developed bunions in each group. If the tight shoe group had more bunions, we could rightly say that tight shoes cause bunions. The reason this works is the randomization process (ideally) eliminates all differences between the groups except for the one you're trying to study. You should have the same number of corn flake eaters in each group if the randomization process worked correctly.

A less convincing but still worthwhile alternative would be to put tight and loose shoes on mice to see if they develop bunions. That's what researchers did in the case of the tobacco-lung cancer link. Controlled studies in animals reinforced the strong suggestion from epidemiological studies that smoking increases the risk of lung cancer.

Finally, another factor in determining the likelihood of associations representing causation is plausibility. In other words, can you imagine a way in which one factor might cause another or is the idea ridiculous? For example, did you know that shaving infrequently is associated with a 30% increase in cardiovascular mortality and a 68% increase in stroke incidence in British men? That's a better association than you get with some blood lipid markers and most dietary factors! It turns out:
The one fifth (n = 521, 21.4%) of men who shaved less frequently than daily were shorter, were less likely to be married, had a lower frequency of orgasm, and were more likely to smoke, to have angina, and to work in manual occupations than other men.
So what actually caused the increase in disease incidence? That's where plausibility comes in. I think we can rule out a direct effect of shaving on heart attacks and stroke. The authors agree:
The association between infrequent shaving and all-cause and cardiovascular disease mortality is probably due to confounding by smoking and social factors, but a small hormonal effect may exist. The relation with stroke events remains unexplained by smoking or social factors.
In other words, they don't believe shaving influences heart attack and stroke directly, but none of the factors they measured explain the association. This implies that there are other factors they didn't measure that are the real cause of the increase. This is a critical point! You can't determine the impact of factors you didn't measure! And you can't measure everything. You just measure the factors you think are most likely to be important and hope the data make sense.

This leads us to another important point. Investigators can use math to estimate the relative contribution of different factors to an association. For example, imagine the real cause of the increased stroke incidence in the example above was donut intake, and it just so happens that donut lovers also tend to shave less often. Now imagine the investigators measured donut intake. They can then mathematically adjust the association between shaving and stroke to subtract out the contribution of donuts. If no association remains, then this suggests (but does not prove) that the association between shaving and stroke was entirely due to shaving's association with donuts. But the more math you apply, the further you get from the original data. Complex mathematical manipulation of observational data requires certain assumptions, and while it is useful for extracting more information from the dataset, it should be viewed with caution in my opinion.

Of course, you can't adjust for things you didn't measure, as the study I cited above demonstrates. If factors you didn't measure are influencing your association, you may be left thinking you're looking at a causal relationship when in fact your association is just a proxy for something else. This is a major pitfall when you're doing studies in the diet-health field, because so many lifestyle factors travel together. For example, shaving less travels with being unmarried and smoking more. Judging by the pattern, it also probably associates with lower income, a poorer diet, less frequent doctor visits, and many other potentially negative things.

If the investigators had been dense, they may have decided that shaving frequently actually prevents stroke, simply because none of the other factors they measured could account for the association. Then they would be puzzled when controlled trials show that shaving doesn't actually influence the risk of stroke, and shaving mice doesn't either. They would have to admit at that point that they had been tricked by a spurious association. Or stubbornly cling to their theory and defend it with tortuous logic and by selectively citing the evidence. This happens sometimes.

These are the pitfalls we have to keep in mind when interpreting epidemiology, especially as it pertains to something as complex as the relationship between diet and health. In the next post, I'll get to the meat of my argument: that modern diet-health epidemiology may in some cases be a self-fulfilling prophecy.
More aboutModern Diet-Health Epidemiology: a Self-Fulfilling Prophecy? Part I

Fruity film and television studies links!

Diposting oleh good reading



Due to a devastating case of total PC meltdown (following painful months of on-and-off digital trouble and strife), Film Studies For Free brought you nothing new for over a week...

But now it's back.  Its mission is possible once again. And this time it's brought to you by a new, more reliable, and thoroughly inspirational computer host (think Scottish fruit). 

FSFF never wants to go away again (until vacation time at least). But it may struggle for a wee while, while its owner learns the cool new language of her wonderful new i-World.

Anyhoo, here are some choice links to celebrate its stylish return:
More aboutFruity film and television studies links!

Banana & Passion Fruit Jam

Diposting oleh good reading on Senin, 06 April 2009

I made homemade jam again, this time, it is Banana & Passion Fruit jam.


I bought these passion fruits many weeks ago...this variety is golden-yellow with small white speckles on the skin, before the fruits were riped. I left them at room temperature, and they took weeks before they started to look 'old'...developing wrinkles and dimples on the skin. Over the weeks, the colour gradually changed to a darker shade of red. I was told that they have to turn into a deep purple (just like a mangosteen) before they are considered fully ripened.

I tasted one unripe fruit the very next day I bought them...the amount of pulp and juice in the fruit was miserable. The fruit was quite 'empty', I was only able to scoop out 2 tiny teaspoons of pulp, and it tasted very sour. I waited for almost 3 weeks...it was a torture having to check on them everyday!...and even though the skin had yet to turn purple, I cut out one fruit to try. There were more pulps and juice this time, and it didn't tasted that sour, although it is still a little tangy. The pulp smells wonderful...that's probably why this highly aromatic fruit is also known as "百香果" in Chinese (I'll like to translate it as '100-fragrance-fruit').


I didn't wait any longer and used two fruits to make this Banana & Passion Fruit jam. Other than the little extra effort required to sterilise the jam bottles, this jam is super easy to make. There are just 3 ingredients...bananas, passion fruit and sugar. The original recipe calls for slicing the bananas into 1mm thick slices...but I did it my way...simply mashed up the bananas with a fork. I mashed the bananas really well...almost like a puree, I want the finished jam to be very smooth with no chunks of bananas in it. Cooking the jam took less than 5 mins...about 2 mins to bring the mixture to a rolling boil and another 2~ 3 mins of boiling until the jam turned clear, and it was done. Once again, this recipe doesn't call for pectin, as the bananas would act as a natural pectin to set the jam. When it is still hot, the consistency of the jam will be quite runny or pourable...but it will set nicely when it cools off.


Although this jam has got more banana than passion fruit...the presence of the passion fruit is quite dominant. It is a very delicious jam and the seeds give a very nice crunch to it. This jam doesn't taste that sweet...I believe it is largely due to the slightly tangy passion fruit. It is yummy on a slice of plain toast...and I may use this jam to make a batch of muffins, or a chiffon cake soon.



Banana & Passion Fruit Jam

Ingredients:
(yields about 300ml of jam)

250g riped bananas (without skin), finely mashed
50g passion fruit pulp (pulps from about 2 fruits)
230g granulated sugar*




Method:
  1. Place finely mashed bananas, passion fruit pulp and sugar in a pot or a large saucepan. Mix well.
  2. On medium heat, stirring constantly with a heat-proof spatula or a wooden spoon, bring the mixture to a full rolling boil (where the bubbles do not stop or lessen when you stir it). Once the mixture starts to boil, skim away any excessive foams or bubbles, stirring constantly all the time.
  3. Keep at a rolling boil for another 2 ~ 3 mins, stirring constantly till the mixture thickens, becomes clearer and transparent (no more foams).
  4. Remove from heat. The jam will be a little runny when hot but the consistency will be just right after it has cool off.
  5. Ladle hot jam into hot sterilised jars leaving a gap of about 1~2cm from the top. (Since I do not have an appropriate ladle or funnel, I poured the jam into my measuring cup before filling the jars. The sprout on the cup helps easy and clean filling.) Secure lids. Let cool. Unopened jam will keep up to 3 months if stored in fridge or in a cool, dark cupboard. Once opened, store in fridge and best consumed within a week**.

    Recipe source: adapted from 鲜美果酱轻松做! by Romi Igarashi
Note:
*Do not reduce the sugar, as the amount is required to preserve the jam.
**According to the original recipe book, once opened, store the jam in fridge and best consumed withint 1 week. I didn't have any problem with my homemade jam after 3~4 weeks. However, for safe eating practices, do examine the jam frequently for signs of spoilage.


More aboutBanana & Passion Fruit Jam

Dental Anecdotes

Diposting oleh good reading on Minggu, 05 April 2009

Here are a few anecdotes gleaned from past comments that describe improvements in oral health due to a change in diet. Please feel free to add your own (positive or negative) experience to the comments. I may add it to the post.

Stan: My teeth stopped decaying and some breakage (broken tooth due to mechanical damage, 5 years ago) begun sealing itself with new enamel on my high animal fat, low carb diet of the last 10 years. I still have all my teeth including wisdom teeth. My teeth no longer develop plaque/scale and thus no need to descale, and I no longer develop cold sores on my gums. I haven't been to a dentist since 1999 (I am 53). [From another comment] I can fully confirm the astounding effect of a diet very high in animal produce and low in plants, on my teeth. My tooth decay has totally stopped! I wrote about that before but it is worth repeating: - my teeth would not decay even if mechanically damaged, broken in half etc. The broken exposed parts of a tooth, even if the core is open, just seals itself over time.

Dave: Our family has had similar experiences. In particular, my daughter had a poorly formed molar (she was a spring baby, before we started Vitamin D, hmmmm). The tooth had quite a large crater in it. I put her on D3 and cod liver oil/butter oil. We finally got a dentist she'd cooperate with enough for X-rays. The result was exactly as described above: a thick layer of dentin had formed. The dentist was thoroughly puzzled, which I enjoyed immensely :-)

Arnoud: For years my dentist has been insisting on more frequent and more aggressive cleaning techniques.... to no avail. Last year I started Vitamin D supplementation, and a more Paleo style of diet, and the 'chronic' inflammation of my gums resolved themselves within days, literally. My dentist claims it is a coincidence. I think not!

Martin: Once I changed my diet to one close to what is listed in this entry, and added a vitamin D3 supplement, my dental health greatly improved. No more cavities, and beyond that, no more rapid build-up of dental plaque. To prevent gum problems, I used to have to get my teeth cleaned four times a year, now, once a year is enough, and it seems to me, even that might not be necessary.

Thresshold: I am a cavity-every-six-months person, who arrested decay for 3 years by going on a Protein Power-like diet. No limit on non-starchy veggies, lots of meat-- turkey, beef --lots of nuts, olive oil, egg a day. No grains. Very little fruit, no sugar. Plenty of supplemented vitamin A and D, E, C, Bs, some dolomite.

Jeff: I just had a dentist visit, first in almost 3 years. No cavities for the first time in a while. Your advice and a Paleo diet are the reason, in my mind.

Dr. Dan: Before paleo I had bleeding gums and sore teeth. Now that I have been on it I have not had them and my flatmate just commented how white my teeth are looking.

Cheeseslave: I have also eliminated cavities since I changed the way I eat. I avoid all phytic acid (I try to only eat sprouted bread or naturally fermented sourdough) and I soak or sprout all my grains, legumes, nuts and seeds. I also take cod liver oil, and eat a nutrient-dense diet consisting of mostly meat and dairy.

Dr. B. G.: Myself, I had periodontal disease (esp immed after pregnancy and lactation -- wonder W-H-Y ??!) however at the last check up -- I have no more pockets of '5' and am released to come in only 2x annually instead of all the extra (painful) de-planing and cleanings. This was improved by: vitamin A, vitamin D 5000 IU every am, high dose fish oil, flaxseed and egg yolks and saturated fats and some K2 supplements. [From another comment] I have to admit -- my dental problems reversed prior to total Paleo eating (eg, wheat-free). On vitamin D and fish oil alone my cavities sealed. In fact I had gone back to see the DDS but he couldn't find one tiny 'sticky' spot. When he decided to fill it irregardless (and I was an idiot to not walk out b/c who knew that cavities could heal/seal...on their own??), then I had to leave him. At that point, the dental hygienist had already let me return to a 'normal' insured 2 cleanings/yr schedule, instead of the $$ 4/year (where 2 were out-of-pocket). With going 100% wheat-free, vits ADEK and adding a little (fresh highquality) flaxseed oil, my gums are super healthy and no throbbing at all for the last 9mos!

Brock:
When I went to my dentist for the first time in a while last September I was told I had six cavities. My dentist told me to schedule to get them filled in, but I never did. I just had the intuitive feeling that the human body ought to be able to heal itself, and that for some reason my dentist just didn't know how. So, I started Googling. My search lead me here and to the Weston Price Foundation. I bought Dr. Price's book and changed by diet months ago. I eat mostly paleo but mainly just focus on avoiding wheat, corn, sugar and n6 fats. I supplement with Vitamins A, C, D, E and K2. Long story short, my six cavities have closed up and my teeth have noticeably improved in color and "feel". Swelling in my gums is down. I can often go for weeks now without brushing my teeth without any noticeable side effects. It's great.

Andrew S.:I had a lot of cavities growing up, and as a young adult. I started up a new company, didn't have health insurance, and didn't go to the dentist in a while -- and started eating whole, natural foods, with a bit of supplementation (mostly cod liver oil). I was surprised when I visited the dentist for the first time in years to not have any decay.

Robert Andrew Brown: I too have gone from regular cavities, indifferent gum health, sensitive teeth, and a host of dental work to prove it, to none since balancing the Omega 3s and 6s, and regular 'industrial' cod liver oil. Small carries that were sensitive and on the list for restorative work have re mineralised and skinned over but not refilled. I have only recently started seriously increasing vitamin D and reintroducing grass fed butter.
More aboutDental Anecdotes